Titanium compounds in view of their physicochemical properties constitute interesting materials applied in chemical synthesis. They are used for preparation of antifungal agents as well as for production of self-cleaning coatings. Moreover, mentioned inorganic compounds are characterized by a capability of neutralizing of unpleasant odor. Those all characteristics make these substances useful in many fields. In the framework of presented research series of polymer materials modified with titanium and titanium oxide have been obtained by means of photopolymerization. In the further step, studies on such synthesized materials have been conducted with particular emphasis on determining a mechanical properties and wettability. Hardness of prepared polymers have been tested by means of Shore durometer. Based on the research it can be concluded that addition of titanium compounds to the polymer matrix resulted in the improvement of mechanical properties as well as in an increase of hydrophobicity. It is worth mentioning that it is possible to manipulate properties of the obtained compositions by the introduction of an appropriate amount of additive into their matrices. ...
Hydrogels (known also as superabsorbents, SAPs-Super Absorbent Polymers) belong to the group of polymers, which has recently become increasingly popular. These compounds are used in many fields, with particular emphasis on medicine and pharmacy. In this paper the synthesis of hydrogels based on chitosan which matrix was modified with products of natural origin (ie. extract of Salvia and bee pollen) and nanoparticles of gold or silver was carried out. The resulting hydrogels were tested for sorption capacity, as well as their tendency to degradation in simulated body fluid was determined. What is more, wettability of the attained materials was also defined. The obtained results confirmed that the introduction of additions to the hydrogel matrix has an impact on the physico-chemical properties of tested materials. ...
Recently, trehalose becomes more and more popular compound. Increasing interest in this disaccharide results from the role as it starts to play in water economy of plants. In conditions of water shortage mentioned organic substance prevents their dehydration. Therefore, application of such interesting additive can contribute to the preparation of materials that can be applied in such areas as agriculture or cultivation of plants. It is also worth mentioning that properties of trehalose make this substance interesting from the medical point of view. Presented additive can have an impact on maintaining organs for transplantation in good condition. In presented research series of polymer superabsorbents modified with described disaccharide have been prepared. Obtained by means of photopolymerization materials differed in an amount of the additive. In the further step, physicochemical properties of superabsorbents have been determined. Following studies have been carried out: swelling studies and incubation studies in simulated body fluids aimed at determination of behavior of prepared materials in solutions similar to those one occurring in human body. Additionally, chemical structure of the hydrogels have been defined using spectroscopic technique. Based on the research it can be concluded that proposed materials are characterized by low sorption capacity and did not ...
Chitosan based hydrogels due to their specific properties and structure belong to the group of materials widely used in medicine. They are used as drug carriers with controlled release of active substances and in the preparation of innovative wound dressings. The main aim of the conducted research was the choice of the most favorable parameters for carrying the cross-linking reaction by means of UV radiation and microwaves. Subsequently, an adequate composition of the mixture containing chitosan and gelatin for further modification of such prepared the polymer matrix with Aloe vera extract was selected. Subsequently, an impact of introduction of Aloe vera extract into hydrogel on its physicochemical properties and structure was determined. The scope of the research included the measurement of swelling abilities of hydrogels in distilled water and selected simulated body fluids as well as incubation studies aimed at determination of tendency of prepared materials to degradation in previously mentioned fluids and their compatibility in relation to such environments. In order to characterize the chemical structure of the polymers and impact of incubation on this structure spectroscopic analysis was performed. Microscopic analysis was used to define the surface morphology of the hydrogels. Moreover, materials containing Aloe vera extract ...
The paper presents a synthesis of the hydrogel materials by photopolymerization. A series of materials differing in the amount of photoinitiator was prepared. In these studies the ability of swelling of attained materials was determined. What is more, incubation studies were also carried out. Measurements of contact angles was conducted and a chemical structure of obtained materials was defined using FT-IR spectroscopy. On the basis of the research the impact on the amount of the photo-initiator on the structure of a polymeric material have been defined. Synthesized materials were characterized by a different degree of the cross-linking, and therefore they have different properties. Hence the conclusion that possibility of the structure modifying of the material creates more opportunities for its use. ...
In this paper, the impact on microwave radiation and UV cross-linking of the course of reaction of obtaining chitosan hydrogels was presented. The synthesis were conducted using either commercial chitosan and Beetosan - chitosan derived from naturally died honeybees as well as using mixed systems containing both chitosan and Beetosan. The swelling capacity of obtained hydrogel materials as well as their tendency to degradation in distilled water and simulated body fluid have been tested. Moreover, morphology of the surface of selected samples using scanning electron microscope was characterized. Furthermore, the contact angles (θ) of attained materials were defined using geometrical method by applying a drop of liquid on the surface of the tested material. ...
The article describes the selection of reaction parameters for preparing magnetic nanoparticles (nanoFe3O4) by Massart's synthesis. However, the magnetic nanoparticles belong to a group of unstable systems and rapidly agglomerate. Therefore, in the second step of the synthesis encapsulation of magnetic nanoparticles usung gold nanoparticles (nanoFe3O4/Au) in the presence of a suitable stabilizer was conducted. Hence, the synthesis was carried out in the presence of 10% (wt.) solution of PVP, 0.1 M sodium citrate and 3% solution of gum arabic. Such synthesis were conducted at room temperature and at 80°C. Progress of the reaction was monitored using UV-Vis spectrophotometry. The resulting magnetic-nanogold encapsulated nanoparticles were analyzed using X-ray diffraction. What is more, for selected samples the average particle size was determined using dynamic light scattering (DLS). ...