EFFECTS OF VERMICOMPOSTS OBTAINED FROM DIFFERENT MIXTURE RATES OF SAME FEEDSTOCKS ON WHEAT GROWTH AND N, P,K, NUTRITION GROWN ON DIFFERENT SOILS

In this study, it was aimed to determine the effects of vermicomposts (VC) obtained from different mixture rates of same feedstocks on growth and N, P, K nutrition of wheat plant grown on alkaline and acidic soils. For this, 0, 5, 10 and 20 t ha-1 vermicomposts were mixed to the 2 kg soil containing pots. Study was conducted as greenhouse experiment for 3 months. In alkaline soil, VC differences significantly affected plant dry weight (DW) and N, P and K concentrations. Application doses significantly affected plant DW, P and K concentrations. Also, VC x dose interaction had a significant effected on plant P and K concentrations. In acidic soil, application doses affected all parameters significantly. At the same time, vermicompost types had a significant effect on P and K. Interaction of VC x dose also had a significantly effect on N, P, and K concentrations of wheat. Effect types and degree of VC were different on alkaline and acidic soils. It was also seemed that the effect of VC on plant N, P and K nutrition was higher in acidic soil than that in alkaline soil. ...

Deficit irrigation under water stress and salinity conditions: fao-aquacrop model

In this research, estimation potential of Aquacrop model under deficit irrigation and sa-linity conditions were evaluated for winter wheat grown under arid and semi-arid climates. Five different irrigation strategies and irrigation water salinity levels (0.5, 5, 7.5, 10, 15 dS m-1) were taken with the model to estimate deficit irrigation and salinity scenarios. Wheat grain yield, biomass production and canopy cover were simulated under deficit and salinity stresses. According to estimation of the model; the deficit irrigation with water reduction of more than 75 % of full irrigation was applied at growth stages of wheat, revealed the significant reduction in grain yield, biomass and canopy cover as compared with full irrigation practice. The increa-se in irrigation water salinity caused a significant decrease in grain yield and biomass value. It was compared to the 0.5 dS m-1 salinity level, a low value of 3% was obtained for the 5 dS m-1 salinity level. Yield loss of 7.5, 10 and 15 dS m-1 salinity levels were found to be 18.97%, 42.5% and 85.6% respectively. Also, increasing irrigation water depth in saline treatments resulted in increased grain and biomass yield. For sustainable water management in agriculture area, using simulation model such as Aquacrop ...