Autokorelacja jest działem statystyki, który zajmuje się analizą danych przestrzennych, w dalszej kolejności opisem i badaniem zjawisk przestrzennych. Metody statystyki przestrzennej nazwane są także przeglądową analizą danych przestrzennych (explorative spatial data analysis, ESDA). Statystyki przestrzenne są efektywnym sposobem wyszukiwania zależności występowania danego zjawiska z przestrzenią geograficzną. Miary autokorelacji przestrzennej obrazują zależność zmiennych w odniesieniu do lokalizacji przestrzennej. Korelacja przestrzenna (autokorelacja dodatnia) pozwala stwierdzić, że nasilenie danego zjawiska jest bardziej zauważalne w obiektach przyległych do siebie niż w obiektach od siebie odległych. W statystyce przestrzennej są wykorzystywane dwa typy miar: miary globalne i miary lokalne. Autorzy w artykule do zobrazowania przestrzennej zależności występowania infrastruktury gospodarki wodno-ściekowej posłużyli się miarą globalną. Do obliczenia miary globalnej wykorzystano program R CRAN. Wyliczono miarę globalną statystyki I Morana dla różnych macierzy wag przestrzennych. Dane do analizy pozyskano z Głównego Urzędu Statystycznego w Krakowie i jest to stan infrastruktury wodno-ściekowej na rok 2004. Statystyka I Morana pozwala wykryć globalne wzorce autokorelacji w obiektach przestrzennych w odniesieniu do przyjętej macierzy wag. Miara globalna jest jedno-liczbowym wskaźnikiem zależności przestrzennej lub ogólnego podobieństwa regionów. Zaletą miary globalnej jest jej syntetyczność, a wadą uśrednianie. W artykule przedstawiono możliwości zastosowania statystyki przestrzennej w analizie zjawisk infrastruktury wodnościekowej. W tym celu zbadano ...