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Abstract

The paper presents simple machine learning models used for pre-
diction of some soil properties based on the NIR spectral response. Data 
on mineral soils from Poland were taken from the LUCAS dataset. Ma-
chine learning model was used that is included in the category of so-called 
multilayer perceptron (MLP). The MLP model input was a vector of com-
bined, transformed inputs made by means of the PLSR (partial last squares 
regression) algorithm (45 inputs in total). The output was a vector of prop-
erties, reduced to 9 components due to poor modelling effects of the P 
and K components. The estimation errors for texture, soil organic carbon 
(SOC) and carbonates can be considered acceptable from the point of view 
of their suitability in the development of cartographic documentation. It 
can be supposed that further regionalization will improve these results.  
 
Keywords: near infrared spectroscopy, soil properties prediction, machine 
learning model

INTRODUCTION

The quantitative evaluation of environment components using indirect 
methods requires interpretation keys that allow extracting the sought-after infor-
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mation from remote observations, or alternatives to the “wet” laboratory obser-
vations. With the popularization of laboratory and field spectrometers, attempts 
are being made in many countries to use spectral measurements instead of tra-
ditional, more costly and time consuming laboratory technique. For many years 
the United States Geological Survey (USGS) has been recording and publishing 
data on reflectance of various materials, natural and artificial, in various spectral 
ranges, obtained as a result of laboratory, field and aero-photography studies 
(Kokaly et al. 2017). Thousands of materials were subjected to spectrophotomet-
ric analysis: minerals, soils, liquids, organic substances, structural and biological 
materials, etc., creating an extensive spectral data library with indexes and quan-
titative chemical characteristics of analysed materials. Identification and quanti-
tative determination of sample features based exclusively on graphical analysis 
of reflected spectrum has not been possible to date, mainly due to the lack of de-
terministic models of the shaping of the spectral response by various materials. 
Thus, the appropriate spectrum interpretation algorithms have to be searched for 
empirically, allowing an indirect determination of sample features without the 
use of wet methods. The effectiveness of such modelling depends on heteroge-
neity of physical and chemical properties of materials which is a potential source 
of spectral response disturbance in terms of a property being determined. 

Soils are mixtures of materials of different grain distribution, organic parts 
of varying chemical composition, soil solutions, etc. Probably, the soils are the 
most difficult materials for spectral analysis. Attempts are being made to de-
velop models allowing the cost and labour intensity reduction of soil features 
determination (Conforti et al. 2018, Fuentes et al. 2012, Kania and Gruba 2016, 
Stenberg et al. 2010). A success in this field would give a tool allowing a sub-
stantial increase of soil sampling, leading to a real, continuous picture of soils 
variation instead of a discrete image (McBratney et al. 2002, McBratney et al. 
2003). Most often, the spectral analysis range covers the wavelengths from 700 
to 2500 nm, including the near infrared (NIR). The spectrometers analysing the 
400-2500 nm spectrum are also used (a part of the visible range and NIR (VIS-
NIR). The idea of using the spectral response relation models and soil properties 
vector results from the aim to replace the contour soil thematic maps with their 
continuous versions, more closely reflecting the actual variation of soil environ-
ment (Mohamed et al. 2018). Theoretically, one can consider the universal mod-
els of the aforementioned relation, and also – more probably – regional or local 
models. The goal of the paper is to estimate, based on the samples from Poland 
included in the LUCAS database, the possibility of developing a useful model 
for prediction of some mineral soil properties, based on the transformed samples 
absorbance spectrum in the near infrared and to evaluate the possible use of such 
models to estimate the soil properties for cartographic documentation. 
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MATERIAL AND METHODS

Within the framework of the soils documentation projects in the EU coun-
tries, since 2009 the European Soil Data Centre (ESDAC) has been conducting 
the Land Use/Cover Area Frame Statistical Survey (acronym LUCAS). In addi-
tion to the location of topsoil samples taken from the depth of 0-30 cm, typology, 
use and other classification details, the dataset made available by ESDAC in-
cludes the laboratory determinations of the grain size (percent of coarse fraction, 
sand, silt and clay) pH in CaCl2, pH in H2O, soil organic carbon (SOC), CaCO3, 
N, P and K, and cation exchange capacity (CEC). In addition, each soil sample 
is described with the absorbance vector in the 400-2500 nm range (VIS-NIR), 
in 0.5 nm increments (4200 values), laboratory measured under identical condi-
tions (Orgiazzi et al. 2017, Toth et al. 2013). 

Table 1. Statistics of soil samples from Poland included in the LUCAS database

Variable
Statistics

Mean Standard deviation
 Clay [%] 8.9 7.68
 Silt [%] 26.9 21.42

 Sand [%] 64.1 26.43
 pH.in.CaCl2 5.1 1.12
 pH.in.H2O 5.7 1.06

 SOC [g·kg-1] 16.9 14.43
 CaCO3 [g·kg-1] 3.7 19.08

 N [g·kg-1] 1.5 1.07
P [mg·kg-1] 37.5 27.02
 K [mg·kg-] 103.4 102.24

 CEC [cmol(+)·kg-1] 7.9 7.40
 

Among about 20 thousand soils samples from the EU countries, there are 
1589 samples from Poland, mostly from the superficial layer of mineral soils, 
only 21 samples are from organic formations. Table 1 presents the statistics 
of 1568 samples of mineral soils that form a substrate of cropland, permanent 
grassland and woodland. The characteristic features of this dataset include: 

• very high variability of properties, except pH; in case of content of 
clay, silt, SOC, CaCO3, N, P, K and CEC the standard deviation is 
close (for carbonates, it significantly exceeds) the mean;

• relatively high sand content;
• domination of acidic pH;
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• low average carbonates content (less than 0.5% by weight);
• relatively low cation sorption capacity;
• low average organic carbon content.

Table 2. Matrix of linear correlation coefficients between the properties values in the 
sample; data from samples from Poland (significant coefficients at the α=0.05  

significance level are highlighted)

Variables Clay Silt Sand pH 
(CaCl2)

pH 
(H2O) SOC CaCO3 N P K CEC

Coarse 0.28 0.15 -0.21 0.06 0.06 0.10 0.12 0.12 -0.07 0.12 0.13
Clay 0.54 -0.74 0.36 0.35 0.25 0.29 0.39 -0.11 0.46 0.58
Silt -0.97 0.26 0.25 0.00 0.08 0.10 -0.08 0.33 0.22

Sand -0.32 -0.31 -0.07 -0.15 -0.20 0.09 -0.40 -0.35
pH (CaCl2) 0.99 -0.03 0.29 0.14 0.00 0.39 0.41
pH (H2O) -0.06 0.28 0.09 -0.02 0.38 0.38

SOC 0.15 0.93 -0.08 0.02 0.64
CaCO3 0.22 -0.03 0.16 0.26

N -0.05 0.09 0.76
P 0.29 -0.07
K 0.21

Table 2 presents the linear correlation coefficients between individual 
properties of soil samples. Some coefficients indicate a rather strong statistical 
correlation of some properties (Clay-CEC, SOC-CEC, N-CEC, N, SOC), few 
correlation coefficients are not statistically significant (SOC-pH, P-pH, SOC-K), 
the majority are statistically significant, also due to a rather large sample size. 

The main problem of the NIR data-based prediction is the spectral re-
sponse vector size (radiation absorbance vector in individual points of the VIS-
NIR range) (Wetterlind et al. 2013). The number of vector components usually 
exceeds one thousand, and is 4200 in case of the LUCAS database. Regardless of 
the algorithm and the model architecture, the number of parameters subjected to 
optimization may exceed the number of observations. Due to a strong linear cor-
relation between the absorbance vector components, the generally used method 
to reduce the number of vector inputs is the PCA algorithm or the Partial Least 
Squares Regression (PLSR) (Liu et al. 2017). Probably, there are other methods 
to reduce the dimensionality. 

The method of searching for an appropriate soil properties estimation mod-
el based on the NIR spectral response is not standardized, mainly because of dif-
ferentiation of spectral properties of the mixture of minerals, mineral and organic 
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substances, each of which has its own, usually unknown, radiation absorption 
characteristics. The problem lies in extraction of input information necessary 
for prediction. It can be raw data obtained directly as a result of reflectance de-
termination, first derivatives of raw data spectra, or second derivatives (Figure 
1.). The generalization of the radiation absorption spectrum with the use of Sav-
itzky-Golay filter is also applied. The dimensionality reduction method widely 
used in industrial laboratories for the analysis of highly homogenous materials 
(raw materials, chemical products, pharmaceuticals) is the Partial Least Squares 
Regression (PLSR). It combines a few advantageous functions, orthogonalizes 
the input data and reduces their number, maintaining the main components of 
relationships with the modelled variables. It performs well also in case of low 
variability of soil material (Kania and Gruba 2016).

Figure 1. Graphs of absorbance vectors and their transformations used in the spectral 
response analyses: first and second derivatives. The absorbance is a logarithmic 

transformation of reflectance in order to linearize the spectral response relationship

The important problem is the possibility of predicting individual soil prop-
erties. Some properties do not have a significant impact on the spectral response, 
or the response is masked by other factors; the possibility of predicting other 
features can result from the statistical relationships between various properties 
(e.g. SOC and N, pH and CaCO3, SOC, and clay content and CEC). 

The classical, dominating approach to the “NIR-Soil properties” model-
ling is the use of PLSR – Partial Least Squares Regression (Liu et al. 2017, 
Shi et al. 2015). The PLSR is an extension of traditional multiple regression, 
particularly widely applied in case of a smaller amount of data than the number 
of potential vector inputs (references). The algorithm is included in many statis-
tical and calculation packages. These algorithms usually provide also input data 
transformation coefficients, involving the data orthogonalization and reduction. 
These calculations used the algorithm included in the MATLAB software pack-
age, reducing the number of input components to 15 (after transformation). The 
PLSR algorithms inputs included: absorbance vector obtained during the labora-
tory measurements of samples from Poland, absorbance vector derivatives, and  
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the second absorbance vector derivatives. The model output was the vector of 
modelled properties values. 

In addition to the PLSR methods, a machine learning model was used that 
is included in the category of so-called multilayer perceptron (MLP). The MLP 
model input was a vector of combined, transformed inputs made by means of the 
PLSR algorithm (45 inputs in total). The output was a vector of properties, re-
duced to 9 components due to poor modelling effects of the P and K components. 
The MLP hidden layer consisted of 20 units with a tangent transfer function. The 
algorithm included in the MATLAB package was used. The results given below 
concern only the validation data (235 observations) selected from the dataset. 

RESULTS

Table 3 includes coefficients of determination (R2) and root mean square 
errors (RMSE) of validation models estimations. Figure 2 presents the dot di-
agrams of the results of models estimations conformity and observed values  
of properties. 

Table 3. Coefficients of determination and root mean square errors from the validation 
of estimation models of soil properties vector based on the VIS-NIR absorbance vector 

of soil samples from Poland included in the LUCAS database; the best modelling 
results are highlighted. 

Algo-
rithm Statistic Clay Silt Sand pH(1) pH(2) SOC CaCO3 N P K CEC

PLSR(A)
R2 0.71 0.55 0.58 0.61 0.60 0.62 0.43 0.61 0.23 0.35 0.54

RMSE 4.15 14.37 17.07 0.70 0.68 8.88 14.33 0.67 23.67 82.34 5.04

PLSR(A1)
R2 0.65 0.46 0.51 0.52 0.51 0.51 0.56 0.53 0.25 0.42 0.47

RMSE 4.55 15.72 18.52 0.77 0.74 10.07 12.70 0.73 23.39 77.75 5.39

PLSR(A2)
R2 0.65 0.57 0.61 0.57 0.55 0.58 0.23 0.54 0.27 0.63 0.49

RMSE 4.49 14.00 16.53 0.73 0.71 9.40 16.72 0.72 23.02 62.29 5.31

MLP(J)
R2 0.83 0.91 0.91 0.45 0.44 0.87 0.96 0.76 - - 0.67

RMSE 3.19 6.57 7.92 0.82 0.79 5.13 3.91 0.52 - - 4.22
Explanation of abbreviations and symbols: pH(1) – pH in CaCl2, pH(2) – pH in H2O, R2 – coefficient of de-
termination, RMSE – root mean square error, PLSR(A) – Partial Least Squares Regression algorithm (15 first 
components) from the VIS-NIR absorbance vector, PLSR(A1) – Partial Least Squares Regression algorithm 
(15 first components) from the first absorbance derivative vector, PLSR(A2) – Partial Least Squares Regres-
sion algorithm (15 first components) from the second absorbance derivative vector, MLP(J) – multilayer per-
ceptron algorithm with inputs – combined components (15 first components each) of absorbance PLSR, first 
absorbance derivative, and second absorbance derivative. 
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Figure 2. Dot diagrams of conformity between the observed data and the MLP NIR-
based model 
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The LUCAS data were used in methodology studies, related mainly to the 
prediction of soil organic carbon based on the NIR analysis. The report from pre-
liminary studies (Toth et al. 2013) includes information about the SOC predic-
tion error (RMSE) in the range from 3.6 g·kg-1 (cropland), 7.2 g·kg-1 (grassland) 
to 11.9 g·kg-1 (woodland). The applied modelling method was a combination of 
the LOCAL algorithm (Shenk et al. 1997) and the interval partial least squares 
(I-PLS). Another paper based on the same data (Stevens et al. 2013) indicated 
the SOC prediction errors of 4.0 g·kg-1 (cropland), 6.4 g·kg-1 (grassland), 10.3 
g·kg-1 (woodland) and 7.3 g·kg-1 (mineral soils). The model used was the support 
vector machines (SVM) with selection of variables according to the recursive 
feature elimination. The paper (Liu et al. 2018) used the LUCAS data for mod-
elling the clay content in soils using one-dimensional convolutional neural net-
work (1D-CNN). The RMSE statistic was 8.62% of clay content, and the RPD 
statistics =1.54. In another paper by the same authors (Liu et al. 2017), a combi-
nation of PLSR algorithms (selection of variables) and decision trees (Gradient 
Boosting Machine) was used to build a combined model. The SOC prediction 
model had the RMSE of 6.8 g·kg-1 (cropland), 10.9 g·kg-1 (grassland) and 13.31 
g·kg-1 (woodland). The same statistic for prediction were: 0.42 g·kg-1 (cropland), 
0.82 g·kg-1 (grassland) and 0.78 g·kg-1 (woodland). The clay prediction RMSE 
was 5.1 – 6.2%. Note that these results relate to the whole set of data from areas 
different in terms of mineral material, climate, methods of use. (Zhang et al. 
2016) considered an attempt to model the soil nitrogen content based on the 
NIR analysis in one of the China regions to be successful. The deep learning 
technique for the NIR-based soil modelling from the LUCAS data is presented 
in (Veres et al. 2015). 

The data from Poland are less differentiated in many terms, and more ho-
mogenous than the differentiated LUCAS database. This can be considered the 
main reason for relatively better NIR-based prediction results. The RPD (Ratio 
of Performance to Deviation), often used in comparisons of prediction models, 
in case of the presented model was from 1.76 (CEC) to 4.9 (CaCO3 content). The 
RMSE values are more convincing as the model reliability measures. The RMSE 
values of the grain size estimation accuracy are surprisingly good, certainly com-
petitive to macroscopic analyses. Also the organic carbon and carbonates content 
prediction errors indicate a sufficient model reliability, particularly for carto-
graphic representation of these two values, especially when the time and costs 
of NIR determinations are taken into account which favour their repetitions for 
better understanding of the actual soils variation and reduction of the estimation 
error of averaged values at the pedon scale. It can be supposed that the near in-
frared determination of soils spectral response will allow a gradual expansion of 
cartographic soil documentation in Poland. 
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CONCLUSIONS

1. Contrary to the results obtained with the application of universal data 
models from 23 European countries, the limitation of modelling to 
a single country significantly increases the soil properties prediction 
results based on the NIR spectral response. 

2. Simple machine learning models give satisfactory prediction re-
sults for a few soil properties: grain size, content of organic carbon  
and carbonates. 

3. It can be supposed that the NIR determination technique will be help-
ful in development of the nationwide spatially continuous cartographic 
documentation of soils.
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