INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS

Nr 6/2010, POLSKA AKADEMIA NAUK, Oddział w Krakowie, s. 133–144 Komisja Technicznej Infrastruktury Wsi

Tadeusz Garguła

WYRÓWNANIE SIECI WEKTOROWEJ GPS NA PŁASZCZYŹNIE ODWZOROWAWCZEJ LOKALNEGO UKŁADU WSPÓŁRZĘDNYCH

GPS VECTOR NETWORK ADJUSTMENT ON THE PROJECTION PLANE OF LOCAL COORDINATE SYSTEM

Streszczenie

Naturalną przestrzenią matematycznego opracowania sieci wektorowej GPS jest globalny układ geocentryczny WGS84. W przypadku potrzeby integracji pomiarów klasycznych i satelitarnych bardziej odpowiednim rozwiązaniem byłoby sprowadzenie sieci wektorowej GPS na płaszczyznę odwzorowania lokalnego, a następnie wyrównanie jej jako sieci poziomej. Pewien problem może stanowić przygotowanie odpowiednich pseudo-obserwacji GPS na płaszczyźnie. W niniej-szej pracy przedstawiono kompletny algorytm obliczeniowy do transformacji ory-ginalnych wektorów GPS do postaci pseudo-wektorów na płaszczyznę układu "2000". Załączono również przykład numeryczny bazujący na wynikach kontrolnego pomiaru okresowego na obiekcie osuwiskowym. Otrzymane wyniki (wyrównane współrzędne płaskie w układzie "2000") zestawiono z wynikami wyrównania oryginalnej sieci GPS oraz z wynikami klasycznych pomiarów naziemnych.

Słowa kluczowe: sieć wektorowa GPS, pseudo-obserwacje GPS, odwzorowanie współrzędnych elipsoidalnych

Summary

The natural space of mathematical development of a GPS vector network is the global geocentric system WGS84. If necessary to integrate the conventional and satellite measurements, a more appropriate solution is to bring the GPS vector network onto the plane of the local projection and to adjust it as a horizontal network. One problem may be a suitable preparation of GPS pseudo-observations on the plane. In this work there is presented the complete calculation algorithm to transform the original GPS vectors to form a pseudo-vectors in the plane of

"2000" system. There is also enclosed a numerical example based on the results of a periodic control measurement of the landslide area. The results obtained (the horizontal coordinates adjusted in the "2000" system) have been next compared to both the results of original GPS network adjustment and the results of the classical terrestrial measurement.

Key words: GPS vector network, GPS pseudo-observations, projection of ellipsoidal coordinates

WSTĘP

W dziedzinie pomiarów geodezyjnych coraz wiekszego znaczenia nabierają obecnie techniki satelitarne. Metody fazowe (różnicowe) GPS, pozwalające z duża dokładnościa wyznaczać wektory dla par punktów, moga być wykorzystywane nawet przy monitoringu przemieszczeń obiektów, gdzie z założenia wymagana jest wysoka precyzja wyznaczeń. Wektory GPS (obserwacie elementarne w metodach różnicowych) zapisane sa w globalnym, geocentrycznym układzie współrzędnych WGS84, a wiec naturalną przestrzenią matematyczną wyrównania sieci wektorowej staje się trójwymiarowy układ XYZ [Lamparski 2001]. Innym możliwym rozwiązaniem jest odwzorowanie pojedynczych wektorów na elipsoidę GRS80 i wyrównanie sieci dwuwymiarowej, złożonej z tzw. pseudo-obserwacji GPS (np. długości linii geodezyjnych i ich azymutów [Kadaj 2009]). Ze względów praktycznych jednak, najwłaściwszym wariantem numerycznego opracowania pomiarów GPS wydaje się sposób polegający na przekształceniu oryginalnych wektorów na płaszczyzne lokalnego układu odwzorowawczego (np. xy2000) i wyrównaniu płaskich "pseudo-wektorów" (Δx , Δy). Niewatpliwa zaleta tej metody jest łatwa integracja pomiarów GPS z klasycznymi obserwacjami naziemnymi [Gargula 2007, 2009]. Efektywne wykorzystanie metody do opracowania wyników pomiarów geodezyjnych wymaga przeprowadzenia kilku etapów przygotowawczych [Kadaj 2009; Gargula 2009], które mogą być realizowane jako oddzielne zadania obliczeniowe za pomocą dostępnych komputerowych programów geodezyjnych (np. GEONET [Kadaj 2006]). Cały proces jest jednak dość pracochłonny i wymaga odpowiedniej wiedzy oraz doświadczenia.

Celem niniejszej pracy jest przedstawienie w uporządkowanej kolejności kompletnego algorytmu na przekształcenia oryginalnych wektorów GPS (ΔX , ΔY , ΔZ) do postaci pseudo-obserwacji (Δx , Δy) na płaszczyźnie układu "2000". Podane zależności teoretyczne mogą stanowić podstawę opracowania odpowiedniego programu obliczeniowego. Do realizacji przykładu praktycznego wykorzystano rzeczywiste wyniki pomiaru okresowego fragmentu sieci kontrolnej przy wyznaczaniu przemieszczeń na obiekcie osuwiskowym w miejscowości Siercza, gm. Wieliczka k. Krakowa [GARGULA I IN. 2009]. Otrzymane wyniki ostateczne (wyrównane współrzędne na podstawie płaskich pseudo-obserwacji Δx , Δy) odniesione zostały do wyników wyrównania oryginalnej sieci wektorowej (po transformacji do układu "2000"). Na podstawie wyrównanych współrzędnych obliczono również odległości poziome między punktami (istotne przy wyznaczaniu przemieszczeń względnych [Kadaj 1998; Preweda 2002; Prószyński, Kwaśniak 2006]) i zestawiono je z wynikami pomiarów klasycznych.

METODOLOGIA OBLICZENIOWA

Przygotowanie zbioru pseudoobserwacji (pseudowektorów płaskich) do wyrównania na płaszczyźnie odwzorowawczej układu "2000" wymaga przeprowadzenia pewnych czynności obliczeniowych (przekształceń), które można podzielić na kilka etapów.

1. Wstępne wyrównanie wektorów GPS w układzie geocentrycznym elipsoidy WGS84; obliczenie współrzędnych kartezjańskich XYZ

Zadanie to polega na rozwiązaniu (według metody najmniejszych kwadratów) układu liniowych równań poprawek, zestawionych dla każdego wektora *ij*, typu:

$$v_{ij}^{(DX)} = dX_j - dX_i + l_{ij}^{(DX)}; \quad v_{ij}^{(DY)} = dY_j - dY_i + l_{ij}^{(DY)}; \quad v_{ij}^{(DZ)} = dZ_j - dZ_i + l_{ij}^{(DZ)}$$
(1) gdzie:

$$l_{ij}^{(\Delta X)} = X_j^{(0)} - X_i^{(0)} - \Delta X_{ij}; \quad l_{ij}^{(\Delta Y)} = Y_j^{(0)} - Y_i^{(0)} - \Delta Y_{ij}; \quad l_{ij}^{(\Delta Z)} = Z_j^{(0)} - Z_i^{(0)} - \Delta Z_{ij},$$

 $(\Delta X, \Delta Y, \Delta Z)$ – wektor GPS (elementy składowe); $v^{(\Delta X)}$, $v^{(\Delta Y)}$, $v^{(\Delta Z)}$ – poprawki do składowych wektora GPS; $X^{(0)}$, $Y^{(0)}$, $Z^{(0)}$ – współrzędne przybliżone; $\delta X, \delta Y, \delta Z$ – estymowane przyrosty do współrzędnych przybliżonych; $l^{(\Delta X)}$, $l^{(\Delta Y)}$, $l^{(\Delta Y)}$, $l^{(\Delta Y)}$ – wyrazy wolne.

2. Określenie punktów zaczepienia "i" oraz obliczenie współrzędnych punktów końcowych "j" każdego wektora "ij"

Współrzędne kartezjańskie punktów początkowych (zaczepienia) *i* każdego wektora uzyskaliśmy już w ramach etapu 1. Współrzędne punktów końcowych *j* obliczamy następująco:

$$X_j = X_i + \Delta X_{ij}; \quad Y_j = Y_i + \Delta Y_{ij}; \quad Z_i = Z_j + \Delta Z_{ij}$$
(2)

3. Rzutowanie na elipsoidę punktów zaczepienia "i" oraz punktów końcowych "j" każdego wektora "ij" (przeliczenie współrzędnych kartezjańskich XYZ na współrzędne elipsoidalne BLH)

Przy realizacji tego zadania korzystamy z podstawowych wzorów geodezji wyższej [Hlibowicki i in. 1988]:

 $X = (R_N + H) \cdot \cos B \cdot \cos L; \quad Y = (R_N + H) \cdot \cos B \cdot \sin L; \quad Z = (R_N \cdot (1 - e^2) + H) \cdot \sin B \quad (3)$

gdzie:

$$R_N = \frac{a}{\sqrt{1 - e^2 \cdot \sin^2 B}}; \quad e^2 = \frac{a^2 - b^2}{a^2},$$

 R_N – promień krzywizny (poprzeczny) w pierwszym wertykale; e – pierwszy mimośród elipsoidy; (a, b) – półosie elipsoidy GRS80 (a = 6 378 137.0000; b = 6 356 752.31414 [GUGiK 2008]).

Wzory (3) służą oczywiście do wykonania "zadania wprost": $BLH \rightarrow XYZ$; dla "zadania odwrotnego" ($XYZ \rightarrow BLH$) niezbędne jest odpowiednie ich przekształcenie. Pierwszą czynnością jest znalezienie promienia równoleżnikowego *r* rzutu danego punktu *P* na elipsoidę (jeden z możliwych sposobów rozwiązania zadania) przy wykorzystaniu funkcji utworzonej z zależności (3):

$$F(r) = \left(\left(R_N + H \right) \cdot \cos B - e^2 \cdot r \right) \cdot \sqrt{\left(a - r \right) \cdot \left(a + r \right)} - \frac{Z \cdot r \cdot b}{a} = 0$$
(4)

W celu obliczenia promienia r stosujemy procedurę iteracyjną:

$$r_{i+1} = r_i - \frac{F(r_i)}{F'(r_i)}$$
(5)

gdzie:

 $i = 0, 1, 2, ... - wskaźnik iteracji; F'(r_i) - wartość pochodnej z funkcji <math>F(r_i)$ względem r.

Jako wartość początkową r przyjmujemy odległość punktu P od osi obrotu elipsoidy (przy tymczasowym założeniu, że H = 0):

$$r_0 = (R_N + H) \cdot \cos B = \sqrt{X^2 + Y^2}$$
 (6)

Procedurę iteracyjną (5) kończymy, gdy wielkość r nie wykazuje już istotnych zmian numerycznych (na poziomie cyfr znaczących). Ostateczne współrzędne elipsoidalne wyznaczymy z wzorów (por. [GUGiK 2008]):

$$\begin{cases} B = \frac{\pi}{2} - \arctan\left(\frac{b \cdot r}{a \cdot (a - r) \cdot (a + r)}\right) \\ L = \arccos\left(\frac{X}{\sqrt{X^2 + Y^2}}\right) = \arcsin\left(\frac{Y}{\sqrt{X^2 + Y^2}}\right) \\ H = \sqrt{\left(\sqrt{X^2 + Y^2} - r\right)^2 + \left(Z - \frac{b \cdot (a - r) \cdot (a + r)}{a}\right)^2} \end{cases}$$
(7)

136

4. Odwzorowanie współrzędnych elipsoidalnych BL punktów i, j na płaszczyznę układu lokalnego (np. xy2000)

Zadanie to będzie się składało z kilku podetapów - por. [GUGiK 2008].

4.1. Przekształcenie elipsoidy na sferę (odwzorowanie Lagrange'a): $(B,L) \rightarrow (\varphi, \lambda = L)$

Zależność pomiędzy szerokością elipsoidalną La sferyczną φ przedstawia równanie

$$\tan\left(\frac{\varphi}{2} + \frac{\pi}{4}\right) = \left(\frac{1 - e \cdot \sin B}{1 + e \cdot \sin B}\right)^{\frac{e}{2}} \cdot \tan\left(\frac{B}{2} + \frac{\pi}{4}\right). \tag{8}$$

W celu rozwiązania tego równania (8) stosuje się tzw. aproksymujący szereg potęgowy lub trygonometryczny.

4.2. Odwzorowanie walcowe poprzeczne Mercatora: $(\varphi, \lambda) \rightarrow (x_{MERC}, y_{MERC})$

$$\begin{cases} x_{MERC} = R_0 \cdot \arctan\left(\frac{\sin\varphi}{\cos\varphi \cdot \cos(\lambda - \lambda_0)}\right) \\ y_{MERC} = 0.5 \cdot R_0 \cdot \ln\left(\frac{1 + \cos\varphi \cdot \sin(\lambda - \lambda_0)}{1 - \cos\varphi \cdot \sin(\lambda - \lambda_0)}\right) \end{cases}$$
(9)

gdzie: λ_0 - południk styczności sfery i walca; R_0 – promień sfery.

4.3. Odwzorowanie płaszczyzny Mercatora na płaszczyznę Gaussa-Krügera: $(x_{MERC}, y_{MERC}) \rightarrow (x_{G-K}, y_{G-K})$

Na ogół korzysta się z wielomianów trygonometrycznych w postaci:

$$\begin{cases} x_{G-K} = x_{MERC} + R_0 \cdot \sum_{k=2,4,6...} a_k \cdot \sin\left(k \cdot \frac{x_{MERC}}{R_0}\right) \cdot \cosh\left(k \cdot \frac{y_{MERC}}{R_0}\right) \\ y_{G-K} = y_{MERC} + R_0 \cdot \sum_{k=2,4,6...} a_k \cdot \cos\left(k \cdot \frac{x_{MERC}}{R_0}\right) \cdot \sinh\left(k \cdot \frac{y_{MERC}}{R_0}\right) \end{cases}$$
(10)

gdzie: *a_k* – współczynnik wielomianu.

4.4. Przeliczenie współrzędnych Gaussa-Krügera do lokalnego układu odwzorowawczego (np. "xy2000"): $(x_{G-K}, y_{G-K}) \rightarrow (x_{"2000"}, y_{"2000"})$

Po wprowadzeniu umownych parametrów przesunięcia x_0 , y_0 , parametru skali m_0 (względem oryginalnego odwzorowania G-K) oraz numery strefy odwzorowania c, otrzymujemy:

$$\begin{cases} x_{"2000"} = m_0 \cdot x_{G-K} + x_0 \\ y_{"2000"} = c \cdot 10^6 + m_0 \cdot y_{G-K} + y_0 \end{cases}$$
(11)

137

Dla obowiązującego w Polsce układu "xy2000" parametry przekształcenia są następujące: $x_0 = 0$; $y_0 = 500000$ m; $m_0 = 0.999923$; c = (5, 6, 7, 8).

5. Utworzenie zbioru pseudo-obserwacji na płaszczyźnie

$$\Delta x_{ij} = x_j - x_j; \quad \Delta y_{ij} = y_j - y_j; \quad \Delta z_{ij} = z_j - z_j$$
(12)

6. Wyrównanie sieci poziomej metodą najmniejszych kwadratów

Model funkcjonalny wyrównania tworzą typowe równania poprawek dla przyrostów współrzędnych płaskich (por. [LAMPARSKI 2001]):

$$v_{ij}^{(\text{Dx})} = dx_j - dx_i + l_{ij}^{(\text{Dx})}; \quad v_{ij}^{(\text{Dy})} = dy_j - dy_i + l_{ij}^{(\text{Dy})}$$
(13)

gdzie:

$$l_{ij}^{(\Delta x)} = x_j^{(0)} - x_i^{(0)} - \Delta x_{ij}; \quad l_{ij}^{(\Delta y)} = y_j^{(0)} - y_i^{(0)} - \Delta y_{ij},$$

 $v^{(\Delta x)}$, $v^{(\Delta y)}$ – poprawki do składowych pseudo-obserwacji GPS; $x^{(0)}$, $y^{(0)}$ – współrzędne przybliżone (z etapu 5); δx , δy – estymowane przyrosty do współ-rzędnych przybliżonych; $l^{(\Delta x)}$, $l^{(\Delta y)}$ – wyrazy wolne.

Rozwiązanie nadokreślonego układu równań liniowych typu (13) przebiega według znanej metody parametrycznej (zob. np. [WIŚNIEWSKI 2005]), a w efekcie końcowym otrzymujemy wyrównane współrzędne punktów w układzie "2000".

PRZYKŁAD NUMERYCZNY

Na rysunku 1 pokazano szkic fragmentu sieci kontrolnej, założonej przy wyznaczaniu przemieszczeń na obiekcie osuwiskowym. Ze względu na brak możliwości zidentyfikowania punktów stałych (bazy odniesienia) zastosowano nawiązanie do kilku dostępnych punktów referencyjnych (w przykładzie wykorzystano tylko dwa) systemu ASG-EUPOS [GUGiK 2008]. Wybrane wyniki z przebiegu procesu przygotowania pseudo-obserwacji i wyrównania przedstawiono w tabelach 1–5, natomiast wyniki analiz porównawczych zawierają tabele 5 i 6.

W tabeli 1 zestawiono wyniki pomiaru sieci kontrolnej metodą statyczną GPS w nawiązaniu do dwóch wybranych (najkorzystniejszych) punktów referencyjnych. Pomiar analizowanego fragmentu sieci (rys. 1) zrealizowano w czasie jednej, ponadgodzinnej sesji pomiarowej przy wykorzystaniu czterech 2-częstotliwościowych odbiorników. "Postprocessing" wykonano manualnie za pomocą programu firmowego *Trimble*.

Tabela 2 zawiera wyniki realizacji etapu 1 – wyrównania wstępnego w układzie geocentrycznym (współrzędne *XYZ*). Dodatkowo zestawiono współrzędne (xy) po transformacji do układu "2000" (dla późniejszych porównań przyjmiemy umowne oznaczenie, że są to współrzędne w *wersji I*). Współrzędne te są wynikiem częściowej realizacji etapów 3 i 4 (będą wykorzystane jako punkty zaczepienia przekształconych wektorów). W tabeli 3 natomiast zestawiono współrzędne punktów końcowych niewyrównanych wektorów (tab. 1) w układzie geocentrycznym (etap 2) oraz wektorów przekształconych do układu "2000" (wynik realizacji drugiej części etapów 3 i 4).

Rysunek 1. Szkic osnowy testowej **Figure 1.** Sketch of the test network

Zbiór obserwacji do wyrównania na płaszczyźnie układu "2000" (wynik realizacji etapu 5) zawiera tabela 4 (Δx , Δy). Po wyrównaniu (etap 6) otrzymujemy obserwacje Δx_w , Δy_w (poprawione przyrosty "pseudo-wektorów" GPS). Wagi obserwacji ($p_x = p_y$) ustalono na podstawie odchyleń standardowych oryginalnych wektorów GPS (tab. 1).

Ostateczne współrzędne (x_w , y_w) uzyskane w wyniku wyrównania w układzie "2000" (przyjmiemy umowną nazwę *wersja II*) zawiera tabela 5. Dodatkowo obliczono odchyłki tych współrzędnych (ω_x , ω_y) w odniesieniu do *wersji I* (tab. 2). Odchyłki te pozwalają oszacować rozbieżności uzyskane w wyniku wyrównania płaskich pseudo-wektorów GPS (maks. ~2,4 cm). Ponieważ nie mamy "bezbłędnych" współrzędnych (punktów wyznaczanych) w układzie "2000", trudno jest stwierdzić, czy odchyłki te są dobrze wyznaczo-

ne. Istnieje natomiast możliwość przybliżonej oceny dokładności względnej (rozmieszczenia wzajemnego punktów – kwestia istotna przy wyznaczaniu tzw. przemieszczeń względnych) na podstawie wykonanych pomiarów klasycznych, przyjęte jako kryterium porównawcze (tab. 6). Odchyłki bezwzględne dla odległości wyznaczonych w *wersji II* ($d_{II} - d_0$) są minimalnie niższe (maks. ~3 mm) niż dla *wersji I*, co pozwala pozytywnie ocenić zaproponowany sposób opracowania wyników pomiarów GPS.

Wektor GPS		Sk	ładowe wekt	ora	Odchylenia standardowe			
GPS vector		Ve	ctor compone	ents	Standard deviation			
Od/ From	Do/ To	ΔX	ΔY	ΔZ	σ_X	σ_Y	σ_Z	
11	10	-19,5187	43,3070	0,1749	0,0079	0,0084	0,0113	
11	21	-1,5709	97,7806	-22,1726	0,0156	0,0151	0,0146	
18	10	-41,5770	-11,2840	28,1583	0,0082	0,0085	0,0107	
18	11	-22,0584	-54,5940	27,9802	0,0101	0,0094	0,0136	
18	21	-23,6393	43,1812	5,8058	0,0081	0,0083	0,0100	
21	10	-17,9373	-54,4661	22,3517	0,0062	0,0064	0,0076	
KRAW	10	4298,3051	11318,1190	-6488,6388	0,0144	0,0133	0,0150	
KRAW	11	4317,6978	11274,7751	-6488,8649	0,0530	0,0361	0,0365	
KRAW	18	4339,8783	11329,3960	-6516,8024	0,0144	0,0133	0,0162	
KRAW	21	4316,2354	11372,5690	-6511,0339	0,0231	0,0213	0,0285	
TRNW	10	26918,7051	-61569,7557	-2919,9450	0,0078	0,0069	0,0087	
TRNW	11	26938,1622	-61612,8987	-2920,0484	0,0265	0,0248	0,0347	
TRNW	18	26960,2290	-61558,3576	-2947,9766	0,0227	0,0205	0,0213	
TRNW	21	26936,6415	-61515,3054	-2942,3057	0,0099	0,0088	0,0121	

Tabela 1. Wyniki pomiaru metodą statyczną GPS**Table 1.** Results of GPS survey by static method

Tabela 2. Współrzędne wyrównane z obserwacji GPS (wersja I)Table 2. Adjusted coordinates from GPS observations (version I)

Nr pkt.	Ukł	ad globalny WG	Układ "2000" – z transformacji		
Point	Glo	obal WGS84 syst	"2000" system – from transformation		
No	X Y Z			x	у
10	3861234,4667	1409068,6017	4861230,8058	5537983,5204	7431742,8588
11	3861253,9789	1409025,3021	4861230,6323	5537981,3421	7431695,4661
18	3861276,0411	1409079,8924	4861202,6572	5537932,6011	7431738,5654
21	3861252,4045	1409123,0647	4861208,4528	5537941,3779	7431787,3362
TRNW	3834315,7655	1470638,3512	4864150,7433	5542208,8180	7498863,4371
KRAW	3856936,1743	1397750,4815	4867719,4488	5548334,8892	7422715,5909

Wyrównanie sieci wektorowej...

Wektor GPS		Ukł	ad globalny WG	Układ "2000"		
GPS vector		Glo	obal WGS84 sys	"2000" system		
Począ-	Ko-					
tek	niec	Х	Y	Ζ	x	У
First	End					
11	10	3861234,4602	1409068,6091	4861230,8072	5537983,5239	7431742,8680
11	21	3861252,4080	1409123,0827	4861208,4597	5537941,3749	7431787,3519
18	10	3861234,4641	1409068,6084	4861230,8155	5537983,5267	7431742,8660
18	11	3861253,9827	1409025,2984	4861230,6374	5537981,3437	7431695,4614
18	21	3861252,4018	1409123,0736	4861208,4630	5537941,3840	7431787,3456
21	10	3861234,4672	1409068,5986	4861230,8045	5537983,5201	7431742,8557
KRAW	10	3861234,4794	1409068,6005	4861230,8100	5537983,5144	7431742,8532
KRAW	11	3861253,8721	1409025,2566	4861230,5839	5537981,3998	7431695,4607
KRAW	18	3861276,0526	1409079,8775	4861202,6464	5537932,5900	7431738,5473
KRAW	21	3861252,4097	1409123,0505	4861208,4149	5537941,3538	7431787,3208
TRNW	10	3861234,4706	1409068,5955	4861230,7983	5537983,5145	7431742,8515
TRNW	11	3861253,9277	1409025,4525	4861230,6949	5537981,3777	7431695,6254
TRNW	18	3861275,9945	1409079,9936	4861202,7667	5537932,6770	7431738,6774
TRNW	21	3861252,4070	1409123,0458	4861208,4376	5537941,3716	7431787,3175

Tabela 3. Współrzędne punktów końcowych wektorów GPS**Table 3.** Endpoint coordinates of GPS vectors

Tabela 4. Wyrównanie pseudo-obserwacji w płaskim układzie "2000" **Table 4.** Adjustment of pseudo-observations in the plane "2000" system

Wektor Vector		Przyrosty do wyrównania Icrements to adjustment		Wagi We- ights	Poprawki Corrections		Przyrosty wyrównane Adjusted increments	
Od/ From	Do/ To	Δx	Δy	$p_x = p_y$	v_x	vy	Δx_w	Δy_w
11	10	2,1818	47,4019	7,69	-0,0054	-0,0083	2,1764	47,3936
11	21	-39,9672	91,8858	2,93	-0,0003	-0,0143	-39,9675	91,8714
18	10	50,9256	4,3007	7,99	-0,0052	-0,0071	50,9204	4,2936
18	11	48,7426	-43,1040	5,35	0,0014	0,0040	48,7440	-43,1000
18	21	8,7829	48,7802	8,53	-0,0064	-0,0088	8,7765	48,7714
21	10	42,1421	-44,4805	14,71	0,0018	0,0027	42,1439	-44,4778
KRAW	10	-10351,3749	9027,2623	3,28	0,0041	0,0044	-10351,3708	9027,2667
KRAW	11	-10353,4894	8979,8698	0,37	-0,0578	0,0033	-10353,5473	8979,8732
KRAW	18	-10402,2992	9022,9564	3,09	0,0080	0,0168	-10402,2912	9022,9732
KRAW	21	-10393,5355	9071,7299	1,11	0,0207	0,0147	-10393,5147	9071,7446
TRNW	10	-4225,3035	-67120,5856	10,86	0,0039	0,0061	-4225,2996	-67120,5795
TRNW	11	-4227,4403	-67167,8117	0,79	-0,0357	-0,1614	-4227,4760	-67167,9731
TRNW	18	-4276,1409	-67124,7598	1,44	-0,0790	-0,1133	-4276,2200	-67124,8731
TRNW	21	-4267,4464	-67076,1196	6,22	0,0029	0,0180	-4267,4435	-67076,1017

Tabela 5. Wyrównanie współrzędnych w układzie "2000" (wersja II) i odchyłki od wersji I Table 5. Adjustment of coordinates in the "2000" system (version II) and deviations from version I

Nr pkt. Point	Wspórzędne Approximate	Wspórzędne przybliżone Approximate coordinates		vki ions	Współrzędne Adjusted co	Odchyłki od wersji I Deviations from ver. I		
NO	x	у	δ_x	δ_y	x_w	y_w	ω_x	ω_y
10	5537983,52	7431742,86	-0,0016	-0,0024	5537983,5184	7431742,8576	-0,0006	0,0076
11	5537981,34	7431695,47	0,0020	-0,0060	5537981,3420	7431695,4640	0,0020	0,0170
18	5537932,60	7431738,57	-0,0020	-0,0059	5537932,5980	7431738,5641	-0,0047	0,0238
21	5537941,38	7431787,34	-0,0055	-0,0045	5537941,3745	7431787,3355	0,0065	0,0117

 Tabela 6. Odległości poziome obliczone ze współrzędnych wyrównanych

 Table 6. Horizontal distances received from the adjusted coordinates

Wektor		0	dległość pozion	Odchyłka od d_0				
Vector		Н	orizontal distan	Deviatoin from d_0				
Od/	Do	d	d	d	d d	d d		
From	/To	u_0	u_I	u_{II}	$u_I - u_0$	$u_{II} - u_0$		
11	10	47,4659	47,4427	47,4435	-0,0232	-0,0223		
11	21	100,2065	100,1861	100,1886	-0,0205	-0,0179		
18	10	51,0998	51,1000	51,1011	0,0002	0,0013		
18	11	65,0638	65,0633	65,0660	-0,0006	0,0022		
18	21	49,5664	49,5543	49,5548	-0,0121	-0,0117		
21	10	61,2751	61,2718	61,2731	-0,0034	-0,0021		

Oznaczenia odległości / Symbol of distances meaning:

 d_0 – z pomiarów klasycznych (naziemnych) / from classical (terrestrial) surveys;

 d_I – z wyrównanych wektorów GPS (wersja I) / from adjusted GPS vectors (version I);

 d_{II} – z wyrównanych poziomych pseudo-obserwacji (wersja II) / from adjusted horizontal pseudo-observations (version II).

PODSUMOWANIE I WNIOSKI

W niniejszej pracy przedstawiono propozycję wyrównania sieci wektorowej GPS bezpośrednio na płaszczyźnie lokalnego układu odwzorowawczego. Do realizacji tego zadania niezbędne jest odpowiednie przygotowanie (przetworzenie) oryginalnych wektorów trójwymiarowych. Przedstawiono algorytm (zależności teoretyczne), służący przeliczeniu obserwacji GPS (wektorów) z układu geocentrycznego WS84 do postaci pseudo-obserwacji (wektorów horyzontalnych) na płaszczyźnie obowiązującego w Polsce układu "2000". Załączony przykład numeryczny stanowi próbę oceny zaproponowanej metodologii pod kątem wykorzystania jej do wyznaczania przemieszczeń powierzchni terenu (osuwiska). Obliczenia wykonano w dwóch, niezależnych wersjach: *I.* Wyrównanie oryginalnych wektorów w układzie geocentrycznym i transformacja współrzędnych do układu "2000"; *II*. Transformacja (rzutowanie) niewyrównanych wektorów GPS na płaszczyznę układu "2000" i wyrównanie dwuwymiarowej, poziomej sieci wektorowej. Uzyskane wyniki z obydwu metod (wersji) wykazują niewielką rozbieżność (do nieco ponad 2 cm), która to dokładność może być istotna przy wyznaczaniu przemieszczeń. W następnym etapie analizy wyników obliczono (na podstawie wyrównanych współrzędnych w każdej z wersji) odległości pomiędzy wyznaczanymi punktami i porównano je z wynikami pomiarów klasycznych (naziemnych). Okazuje się, że w tym porównaniu korzystniej wypada proponowana metoda obliczeń (wersja II) – odchyłki od długości klasycznych są niższe niż analogiczne odchyłki dla wersji I (do 3 mm). Różnice te mogą mieć znaczenie przy wyznaczaniu przemieszczeń względnych (wzajemnych). Decydującym czynnikiem przy wyborze przedstawionego sposobu opracowania wyników powinna być jednak możliwość łatwej integracji z wynikami pomiarów klasycznych (kątowo-odległościowych).

PODZIĘKOWANIA

Praca naukowa finansowana ze środków na naukę w latach 2007–2009 jako projekt badawczy (Nr N N526 2094 33).

BIBLIOGRAFIA

- Gargula T. An algorithm of adjustment for modular networks integrated with GPS measurements. Сучасні досягнення геодезичної науки та виробництва. Випуск I (13), Western Geodetic Society, Institute of Geodesy of National University "Львіська політехніка", Lvov 2007, s. 71–76.
- Gargula T. The conception of integrated survey networks composed of modular networks and GPS vectors. Survey Review, Wielka Brytania, Vol. 41, No. 313, 2009, s. 301–313.
- Gargula T., Kwinta A., Siejka Z. Zastosowanie sieci modularnych zintegrowanych z pomiarami GPS do wyznaczania przemieszczeń. III Ogólnopolska Konferencja Naukowo-Techniczna nt. Kartografia numeryczna i informatyka geodezyjna. Rzeszów–Polańczyk–Solina, 14–16.09.2009, s. 93–104.
- GUGiK Wytyczne techniczne G-1.10. Formuły odwzorowawcze i parametry układów współrzędnych. Główny Urząd Geodezji i Kartografii, Warszawa 2001, s. 103.
- GUGiK 2008. Wytyczne techniczne G-1.12. Pomiary satelitarne oparte na systemie precyzyjnego pozycjonowania ASGEUPOS (Projekt z dnia 1.03.2008 r. z poprawkami). Główny Urząd Geodezji i Kartografii, Warszawa: 19 ss.
- Hlibowicki R., Krzywicka-Blum E., Galas R., Borkowski A., Osada E., Cacoń S. Geodezja wyższa i astronomia geodezyjna. PWN, Warszawa–Wrocław 1988, s. 406.
- Kadaj R. Modele, metody i algorytmy obliczeniowe sieci kinematycznych w geodezyjnych pomiarach przemieszczeń i odkształceń obiektów. Wyd. AR, Kraków 1998, s. 150.
- Kadaj R. System geodezyjny GEONET (4.0-5.0) opis funkcjonalny i instrukcja obsługi. AlgoRes-Soft Rzeszów 2006, s. 77.
- Kadaj R. Jak rachować pomiary GPS? NAVI dodatek do GEODETY. Wyd. SIGMA-NOT, Nr 1 (19): 2009, s. 10–13.

Lamparski J. NAVSTAR GPS - Od teorii do praktyki, Wyd. UW-M, Olsztyn 2001, s. 548.

- Preweda E. Estymacja parametrów kinematycznego modelu przemieszczeń, Uczelniane Wyd. Naukowo-Dydaktyczne AGH, Kraków 2002, s. 102.
- Prószyński W., Kwaśniak M. Podstawy geodezyjnego wyznaczania przemieszczeń. Pojęcia i elementy metodyki. Oficyna Wydawnicza Politechniki Warszawskiej, 2006, s. 212.
- Wiśniewski Z. Rachunek wyrównawczy w geodezji (z przykładami), Wyd. UW-M, Olsztyn 2005, s. 474.

Dr inż. Tadeusz Gargula Katedra Geodezji UR ul. Balicka 253A Kraków e-mail: rmgargul@cyf-kr.edu.pl tel. (12) 662-45-13

Recenzent: Prof. dr hab. Edward Preweda